

We want to formulate such a
statement in terms of algebras of
operators.
() Local operators. Start
$$w|_{\alpha}$$

translation invariant theory on \mathbb{R}^{n}_{1}
 $w|_{\alpha}$ foredomential field
 $\varphi \in C^{\infty}(\mathbb{R}^{n}, \mathbb{V})$. $\mathbb{V} = \mathfrak{L}$
Level operators at $0 \in \mathbb{R}^{n}_{1}$
 $\varphi \mapsto \mathcal{O}_{\mathcal{R}_{1}}^{k_{1}} \cdots \mathcal{O}_{\mathcal{R}_{n}}^{k_{n}} \varphi$ (o).
 $k_{j} \neq j = 0$.
 $k_{j} \neq j = 0$.

· In general, the freld op must

Observedoles on
$$D \subseteq R^{2}$$

 $|| defn$
 $\int Lre(\Lambda^{*}(D) \otimes g)$.
 $\int D^{1}(D) = D^{2}(D)$
 $\int D^{2}(D) = D^{2}(D)$
 $\int D^{2}(D) = D^{2}(D) = D^{2}(D) = D^{2}(D) = D^{2}(D)$
 $\int D^{2}(D) = D^{2}(D) = D^{2}(D) = D^{2}(D) = D^{2}(D) = D^{2}(D)$
 $\int D^{2}(D) = D$

$$\gamma, \beta \in \Lambda(\mathbb{R}),$$

$$EOM: dX = dP = 0$$
.

$$f: \mathcal{L} \longrightarrow \mathcal{L}(\rho)$$

$$p: p (\circ)$$
.

The "propagator" is

$$p(x, y) = O(y - x)$$

 $e(x - y) = O(x - x)$
 $e(x - y) = \delta(x - y)$.

=) $\left[P,q \right] \land + \left[. \right]$

$$\widetilde{M}$$
 of M , the
 \mathbb{R} How $(M, N) \cong$ How (\widetilde{H}, N) .

$$\mathcal{E}_{\mathcal{K}}$$
: $\mathcal{A} = \mathcal{C}[\mathcal{R}]$; $\varepsilon(f) = f(o)$.

$$\frac{-1}{2} \frac{\pi}{2} \frac{1}{2} \frac{1$$

$$\mathbb{R}$$
 Hom $(\Phi_{\Sigma}, \Phi_{\Sigma})$
 $\Phi[x] (\Phi_{\Sigma}, \Phi_{\Sigma}) \quad [\partial_{x}, x] \neq 0$.

$$\simeq$$
 Evd $(C[x,2])$ $[\partial_{x,x}|\neq 0$.

$$\simeq \left(\mathbb{C}\left[x,2,32\right], d = \left[x32,-7\right] \right)$$

$$\begin{aligned} |\mathcal{I}| &= -1 & \mathcal{J} &\simeq \\ |\mathcal{I}| &= +1 & \mathcal{J} &\simeq \\ & \left(\mathcal{P} \left[\begin{array}{c} \partial_{2} \end{array}\right] &, \quad d = 0 \end{array} \right) &, \\ &= & 1 & \partial_{2} & . \\ \\ \text{Hore gaundly,} & & z^{i} = \partial_{3} \\ & &$$

$$\begin{split} & \underbrace{\mathbb{E}}_{X} : g = \operatorname{Lie}(G) \\ & \operatorname{Ci}(g) \stackrel{=}{=} \operatorname{heft} \operatorname{invt} \operatorname{diffundual} \operatorname{forms} \\ & \operatorname{Or} & \operatorname{Or} & G \\ & \operatorname{Or} & \operatorname{Or} & G \\ & \operatorname{de} & \operatorname{de} & \operatorname{de} \\ & \operatorname{de} & \operatorname{de} & \operatorname{de} \\ & \operatorname{Vi}(u) \stackrel{=}{=} C^{\infty}(u) \otimes \Lambda(g^{v}) \\ & \operatorname{Since} \quad TG \stackrel{=}{=} G \times g \cdot Tf \\ & \widehat{G} \operatorname{doobes} \operatorname{veighborbood} \operatorname{of} 1 \in G, thn \\ & \widehat{G} \stackrel{\sim}{=} \operatorname{Vi}(\widehat{G}) \operatorname{by} \operatorname{Poincee} \\ & \operatorname{hore} \end{array} \end{split}$$

() wedge product. $\mathcal{N}(a)_{\alpha} \stackrel{\sim}{=} \mathcal{C}(a)$

 $C'(q)' \simeq End (n'(\hat{G})).$ $N'(G)^{G}$ Operators which commite w/ wedge product by left inst differial. $X \in G$, $f_X = inf$. Left translation.

Theorem :
$$Sps \in : t_{0} \rightarrow C \approx an$$

augmentation. Then there is 1-1
correspondence [Algebraic couplings]"
• HC elements $\alpha \in t \otimes B$.
 $s.t. (z \otimes t)(\alpha) = 0$.
• $Algebraic hermomorphisms$
 $f_{\alpha} : A \stackrel{!}{\longrightarrow} B$.
 $g \approx Sym \stackrel{z}{\longrightarrow} Sym \stackrel{z}{\longrightarrow}$

$$\frac{d}{deg} \propto + \alpha \cdot \kappa = 0$$

$$(=) \quad Equivalut to \quad P_{A}: g \to B \text{ s.t.}$$

$$\frac{d}{deg} \left([x, y]_{g} \right) = \qquad \forall \ x, y$$

$$\frac{d}{deg} \left([x, y]_{g} \right) = \qquad \forall \ x, y$$

$$\frac{d}{deg} \left([x, y]_{g} \right) = \qquad \forall \ x, y$$

$$\frac{d}{deg} \left([x, y]_{g} \right) = \qquad \forall \ x, y$$

$$\frac{d}{deg} \left([x, y]_{g} \right) = \qquad \forall \ x, y$$

$$\frac{d}{deg} \left([x, y]_{g} \right) = \qquad \forall \ x, y$$

$$\frac{d}{deg} \left([x, y]_{g} \right) = \qquad \forall \ x, y$$

$$\frac{d}{deg} \left([x, y]_{g} \right) = \qquad \forall \ x, y$$

$$\frac{d}{deg} \left([x, y]_{g} \right) = \qquad \forall \ x, y$$

$$\frac{d}{deg} \left([x, y]_{g} \right) = \qquad \forall \ x, y$$

$$\frac{d}{deg} \left([x, y]_{g} \right) = \qquad \forall \ x, y$$

$$\frac{d}{deg} \left([x, y]_{g} \right) = \qquad \forall \ x, y$$

$$\frac{d}{deg} \left([x, y]_{g} \right) = \qquad \forall \ x, y$$

$$\frac{d}{deg} \left([x, y]_{g} \right) = \qquad \forall \ x, y$$

$$\frac{d}{deg} \left([x, y]_{g} \right) = \qquad \forall \ x, y$$

$$\frac{d}{deg} \left([x, y]_{g} \right) = \qquad \forall \ x, y$$

$$\frac{d}{deg} \left([x, y]_{g} \right) = \qquad \forall \ x, y$$

$$\frac{d}{deg} \left([x, y]_{g} \right) = \qquad \forall \ x, y$$

$$\frac{d}{deg} \left([x, y]_{g} \right) = \qquad \forall \ x, y$$

$$\frac{d}{deg} \left([x, y]_{g} \right) = \qquad \forall \ x, y$$

$$\frac{d}{deg} \left([x, y]_{g} \right) = \qquad \forall \ x, y$$

$$\frac{d}{deg} \left([x, y]_{g} \right) = \qquad \forall \ x, y$$

$$\frac{d}{deg} \left([x, y]_{g} \right) = \qquad \forall \ y$$

$$\frac{d}{deg} \left([x, y]_{g} \right) = \qquad \forall \ y$$

$$\frac{d}{deg} \left([x, y]_{g} \right) = \qquad \forall \ y$$

$$\frac{d}{deg} \left([x, y]_{g} \right) = \qquad \forall \ y$$

$$\frac{d}{deg} \left([x, y]_{g} \right) = \qquad \forall \ y$$

$$\frac{d}{deg} \left([x, y]_{g} \right) = \qquad \forall \ y$$

$$\frac{d}{deg} \left([x, y]_{g} \right) = \qquad \forall \ y$$

$$\frac{d}{deg} \left([x, y]_{g} \right) = \qquad \forall \ y$$

$$\frac{d}{deg} \left([x, y]_{g} \right) = \qquad \forall \ y$$

$$\frac{d}{deg} \left([x, y]_{g} \right) = \qquad \forall \ y$$

$$\frac{d}{deg} \left([x, y]_{g} \right) = \qquad \forall \ y$$

$$\frac{d}{deg} \left([x, y]_{g} \right) = \qquad \forall \ y$$

$$\frac{d}{deg} \left([x, y]_{g} \right) = \qquad \forall \ y$$

$$\frac{d}{deg} \left([x, y]_{g} \right) = \qquad \forall \ y$$

$$\frac{d}{deg} \left([x, y]_{g} \right) = \qquad \forall \ y$$

$$\frac{d}{deg} \left([x, y]_{g} \right) = \qquad \forall \ y$$

$$\frac{d}{deg} \left([x, y]_{g} \right) = \qquad \forall \ y$$

$$\frac{d}{deg} \left([x, y]_{g} \right) = \qquad \forall \ y$$

$$\frac{d}{deg} \left([x, y]_{g} \right) = \qquad \forall \ y$$

$$\frac{d}{deg} \left([x, y]_{g} \right) = \qquad \forall \ y$$

$$\frac{d}{deg} \left([x, y]_{g} \right) = \qquad \forall \ y$$

$$\frac{d}{deg} \left([x, y]_{g} \right) = \qquad \forall \ y$$

$$\frac{d}{deg} \left([x, y]_{g} \right) = \qquad \forall \ y$$

$$\frac{d}{deg} \left([x, y]_{g} \right) = \qquad \forall \ y$$

$$\frac{d}{deg} \left([x, y]_{g} \right) = \qquad \forall \ y$$

$$\frac{d}{deg} \left([x, y]_{g} \right) = \qquad \forall \ y$$

$$\frac{d}{deg} \left([x, y]_{g} \right) = \qquad \forall \$$

Given anota coupling, MC clout

have

$$\mathcal{A} = \Phi_{\mathcal{A}} (\mathcal{A}_{UNiV})$$

$$\Sigma(\lambda) = 0$$
 (=) line defet preserves
this vacuum.

•Relationship to "physical" couplings.

$$0^{\circ} \in \mathcal{L}$$
 local operator at $0 \in \mathbb{R}^{n}$.
11
 $0(0)$ $u \in \mathbb{R}^{n}$.
 $(g(n) = 0(\pi) . Defin$
 $(f(n) \in C^{\infty}(\mathbb{R}^{n}, \mathcal{L}))$.
Sps use an in a TFT. Thus
 $i = 1, \dots, n$
 $2 \text{ acts hty trutally}$.
 $=) = M^{i} \text{ st.}$ $(\mathcal{A}, Q_{\mathcal{A}}) \frac{dg}{dg \text{ system}}$.
 $[Q_{\mathcal{L}}, N^{i}] = 2$
 $2\pi;$

$$U^{(i)}(\mathbf{x}) = \frac{\mathbf{z}}{\mathbf{z}}(\mathbf{y}^{i}(\mathbf{0})(\mathbf{x}) d\mathbf{x};$$

 $\in \mathcal{N}(\mathbf{R}^{n}, \mathbf{A})$

Can $g_{\mathcal{P}}$ all the way $v_{\mathcal{P}}$... $O^{(n)}(\mathbf{x}) = (\gamma^{i} O^{(n-1)})(\mathbf{x}) d\mathbf{x};$

Defins Logrongian J ()⁽ⁿ⁾ (n) Rⁿ

Astrometric
$$Q_{\mathcal{A}} - cbied$$
:
 $Q_{\mathcal{A}} \int (\mathcal{O}^{(n)}(x)) = \int d_{\mathcal{A}}e^{(-)}$
 $= 0$.
For line defects we will just care
about $n = 1$.
 $\mathcal{A} \in \mathcal{A} \otimes \mathcal{B}$ degree ± 1 .
 $=)$
 $\mathcal{A}^{(1)} \in \mathcal{N}(\mathcal{R}, \mathcal{A})$
 $=)$
 $\int \mathcal{A}^{(1)}$ Lagrangian density.

R

Then
$$(i) = p_j A_p f_j$$
.

=) Log coupling $\int P_{j}^{ai} A_{a} P_{fi}^{j} = \int (P_{i}, A \cdot f)$ R R

A
$$\in$$
 $\mathcal{N}(\mathbb{R} \times \mathbb{R}_{70}) \otimes \mathcal{Gl}_{N}$ Ti
B \in $\mathcal{N}(\mathbb{R} \times \mathbb{R}_{70}) \otimes \mathcal{Gl}_{N}$.

=) local operators of just the gauge fuld
$$\simeq C'(g)$$
.

- BC at
$$v = \infty$$
:
 $\begin{cases} A = 0 \end{cases}$
Operators of just the B-frelds.

-

$$\varepsilon(ab) = \varepsilon(a)\varepsilon(b)$$

