Back veactions
"Gravity" thy on R" w/ traws olang

$$
\mathbb{R}^{k} \subseteq \mathbb{R}^{n}
$$

$A=$ aly of op's far ganity.
$B_{N}=d_{y}$ of qis for thon.
Coppling: $A!\longrightarrow B_{N}$.
in ganual gets defaned

$$
\underset{\hat{\jmath}}{\tilde{A}!} \longrightarrow B_{N}
$$

Koszul dual of gravity in a "modfed geancty".
(1) Brave charges

From a world sheet parspectio

$$
\Sigma \xrightarrow{\phi} x
$$

braves come from boundary conditions

$$
\left.\phi\right|_{\partial \Sigma} \in L \in X
$$

The boundary conditions must de compatible with supersymantry, gary symmetries, etc...
\Rightarrow Only certain submaniflds 2 are consist tent.

Ex:. Tope A-model.
$X=$ symplectio mfld
$L \subset X$ Layrangian.

- Tope B-model
$X=$ cple mfld.
$L<x$ cple suburfld
(better: whunt sheaf).

We wort to thinle about draves as defects in the target space thy ar X.

- Sources: In gavel, there will be folds in the gravitational spacetime X thy which "source" a brave.

In physical string thy, there ane fields, called potantials, in the thy

$$
C^{(p)} \in \Omega^{p}(x)
$$

Which source a p-dime brace $L \subset x$ vier $p=1 \sim$ wits on ham

$$
\int_{L C x} c^{(p)}=\int_{x} \delta_{\alpha c x^{\wedge}} c^{(p)}
$$

Often EOM only inuslue the frold strany th

$$
d c^{(p)} \in \Omega^{p+1}(x) .
$$

If X^{d} is Riemanian, then

$$
\text { *: } \Omega^{k}(x) \rightarrow \Omega^{d-k}(x) \text {. }
$$

The electric-maguitie dval of $C^{C 1}$ is

$$
\tilde{C}^{(d-p-2)} \in n^{d-p-2}(x)
$$

s.t.

$$
d \tilde{C}=* d c
$$

Soy that

$$
\int c^{(p)}
$$

- $C^{(p)}$ "electriell sourced for \mathcal{L} p $\subseteq x$.

$$
\int_{f^{d-p-L}} \tilde{c}^{(d-p-2)}
$$

Ex: In IIA string the following frald strouth oppear dc RR falls.

$$
F^{(0)}, F^{(2)}, \ldots, F^{(10)} .
$$

In IIB string thy,

$$
F^{(1)}, F^{(3)}, \ldots, F^{(9)}
$$

Called Romond-Romond feld stcenghs.
थx: In IIB the is $\quad F^{(1)}, P^{(3)}, F^{(5)}+$.

$$
F^{(10-2 k-1)}=* F^{(2 k+1)}
$$

$A^{(2 k)}$ is $R R$ form $d A^{(2 k)}=F^{(2 k+1)}$
couples to $D(2 k-1)$ braves magetroclly

$$
\int_{\mathbb{R}^{2 k}} A^{(2 k)}=\int_{\mathbb{R}^{2 k}} d^{-1} \underbrace{F(2 k+1)}_{r} .
$$

\backslash fond firld.
$A^{\text {(2k) }}$ is yil tyee fuld, Kinto part is

$$
\int d A^{(2 k)} \overbrace{F^{(10-2 k-1)}}^{\overbrace{A^{(2 k)}}^{F^{(2 k+1)}}}
$$

In presene of wagutic coppling,

$$
\begin{gathered}
d F^{(10-2 k-1)}=\delta \mathbb{R}^{2 k} \subseteq \mathbb{R}^{10} . \\
\int_{\mathbb{R}^{2 k}} A^{2 k}=\int_{\mathbb{R}^{n}} \delta_{\mathbb{R}^{2 k}} \wedge A^{2 k} .
\end{gathered}
$$

Upshot: Presence of brave modifers the EOM far the purely gavitotimal theory.

Rough idea: Forget about they on the became. The presence of the brow means there certain folds in gravity acquire charges, meaning EOM ore modified.

We should be computing local operettas of this modified gravitational they.

$$
A(x-\text { brave }) \rightarrow \widetilde{A}_{N}(x, \text { brave })
$$

$$
\text { charge will depend on the } \neq \text { of }
$$

braves (and possibly other data...)

$$
\int A^{(2 k)} \wedge\left(N \delta_{R^{2 k}}\right)
$$

(2) Bacle reactions as deformations.

Parturbatively, a classical ficld thy is descrited by an L_{∞} algebm

$$
\begin{aligned}
& \left(\mathcal{L} ; l_{1}, l_{2}, \ldots\right) \\
& l_{k}: \mathcal{L}^{x k} \longrightarrow \mathcal{L}[2-k] . \\
& -l_{1}^{2}=0, \\
& -l_{2}^{0} l_{1}=\ell_{1} \cdot l_{2} \cdots
\end{aligned}
$$

At level of action puls

$$
\begin{aligned}
\int_{x} \omega\left(\alpha, l_{1} \alpha\right) & +\omega\left(\alpha, l_{2}(\alpha \alpha)\right) \\
& +\ldots
\end{aligned}
$$

Pertutative fold thy
in BU fuls $\sim \sim$ w/ "cyctic ste."

$$
\begin{aligned}
& \text { - } S: \text { ficlds } \rightarrow \mathbb{C} \\
& \text { - }\{-,-\{8 V \text { srochet }
\end{aligned}
$$

$$
\begin{aligned}
& \{S, S\}=0 \\
& \text { "classieal mastu } \\
& \text { eqn" } \\
& \{-,-\}^{\prime \prime}=\omega^{-1} \\
& S=\int \omega\left(\phi, l_{1} \phi\right)+\int \omega\left(\phi, \ell_{2} \phi\right)+\cdots \cdot \\
& \{S, S\}=0 \quad \Leftrightarrow \quad \text { Lo retri's. }
\end{aligned}
$$

$M C$ equ for $\mathcal{L} \Longleftrightarrow E O M$

$$
\begin{aligned}
& D(\alpha)=0 . \\
& \tau_{\text {non- } \lim } P D E .
\end{aligned}
$$

Sos α sourced by a brave $\mathcal{L} \subset X$, then there is a term in the Lagrangian

$$
\int_{\mathcal{L} \subset x} \alpha=\int_{x} \alpha \wedge \delta \alpha c x
$$

EOM get's modified

$$
D(\alpha)=\delta_{\mathcal{L} \subset x} \cdot(*)
$$

Our way to think about this is as a "MC eqn" jaw a
curved los algebra
Note that the curving is localized to the brave.

A soln to (t) is called a "bach reaction" $\alpha=\alpha_{B R}$.
$\alpha_{\text {BR }}$ will have singuburtires along the brave. DJ Defuns the they away from lows of browne.

$$
x-\mathcal{L}
$$

Bocleground when α takes nonzero valor α_{32}.

This discussion ignores the actual theory along the bruce.

In practice we have

$$
\begin{gathered}
\varepsilon_{\text {grave }}^{\alpha} \oplus \varepsilon_{\text {brace }}^{A} \\
\int_{x} \mathcal{L}_{\text {grail }}(\alpha)+\int_{\mathcal{L} \subset x} \alpha \\
\int_{\mathcal{L} \subset x} \mathcal{L}_{\text {couple }}(\alpha, A)+\int_{\mathcal{L} \subset x} \mathcal{f}_{\text {bran }}(A) .
\end{gathered}
$$

In this sense, the source ter is like a "zeroth" ordan coupling to the thy on the brave.

Twos points of view:

1) Thy on X, \mathcal{L} is deformed.

Alg of operators of ∞ in this new bacleground

$$
\tilde{A}_{\infty} \xrightarrow{\sim} \lim _{N \rightarrow \infty} B_{N}
$$

? $\underset{A}{A}!$ for some \tilde{A} along the brace?
2) In the presence of brave, they is anomachaus, bot this amaverely car be trivialized.

$$
\left.\rightarrow A^{!}\right|_{0=f(N)}=A_{\infty} .
$$

- In the magnetically coupled case, things are trickier.

Spp α is a $(p+1)$-fum. Then a magnetic source far p-dime will bole like

$$
\int_{L^{P}} d^{-1} \alpha
$$

Two points of view :

1) Thy on X, \mathcal{L} is still deformed

$$
\begin{gathered}
\delta\left(f^{-1} \alpha\right): D(\alpha, d \alpha, \ldots)=\delta_{\mathcal{L} \subset x} . \\
\sim \alpha_{\text {BR }}
\end{gathered}
$$

$m \widetilde{A}_{\infty}$ ole of op's at $\infty \in X \backslash \mathcal{L}$ in this background.
2) Thury is anomalous. The anowaly defines some central extersion of the groutational fields alony the brove.

$$
\mathbb{C} \longrightarrow \widehat{f_{k}} d_{s} \longrightarrow f_{1 c \mid} \longrightarrow
$$

amenaly gies rese to cuntal at.!

$$
\begin{aligned}
& A=C^{\prime}(g) \leq 5 \\
& \hat{A}=C^{\prime}(\hat{g})
\end{aligned}
$$

Have

$$
\tilde{A}_{\infty}=\hat{A}!
$$

(3) Examples Let's use the following toy "gravitational" model.

$$
\begin{gathered}
\mathbb{R} \times \Phi^{2} \\
\alpha \in \Omega^{0}(\mathbb{R}) \otimes \Omega^{0 j}\left(\phi^{2}\right) \otimes l_{\alpha}[1] \\
S(\alpha)=\frac{1}{2} \int d^{2} z \wedge\left(\alpha d \alpha+\frac{1}{3} \alpha\{\alpha, \alpha\}\right)
\end{gathered}
$$

when

$$
\{,\} \text { P.B. on } \mathbb{C}^{2}
$$

This they is sick post one-loop. Who cares...

First type of brave:
"M2 braves"

$$
\cdot \mathbb{R} \times\{0\} \subseteq \mathbb{R} \times \mathbb{C}^{2}
$$

leods to aned MC equ /EOM

$$
\begin{aligned}
&(\not \chi+\bar{\partial}) \alpha+\frac{1}{2}\{\alpha / \alpha\} \\
& 2 \text {-fans } \text { only } d \bar{z} \\
&=N\left(d^{2} z\right)^{-1} \delta_{\mathbb{R} \times 0}
\end{aligned}
$$

Soln $\quad \bar{\partial}_{\alpha}=\delta_{R=0}, \mathbb{R} \times \mathbb{C}^{2}-\mathbb{R}$

$$
\alpha_{B R}=N \frac{\bar{z}_{1} d \bar{z}_{2}-\bar{z}_{2} d \bar{z}_{1}}{|z|^{4}} \mathbb{R}^{\prime \prime} \times\left(\mathbb{C}^{2}(0) .\right.
$$

x hol symplatio:
"Boden-Martuall:"

$$
\leadsto \quad \partial \alpha_{B R} \in \underbrace{n^{0,1}\left(c^{2}, 0, T\right)}_{\mathbb{C}^{2}(0)}
$$

defame ply str. on $\mathbb{C}^{2}>0$.
This

$$
\mathbb{R} \times\left(\widetilde{\mathbb{\Phi}^{2}}-0\right)_{N}
$$

is a twisted urson of

$$
A d S_{2} \times S^{3}
$$

Compactly along $s^{3} \subset \mathbb{\Phi}^{2}>0$ to get thy on $\mathbb{R} \times \mathbb{R}_{>0} \mapsto(t,|z|)$.

This is the PSAY for some luge Poisson mild, $\operatorname{Diff}(\mathbb{C})^{v}, w /$ an extra term proportional to $\alpha_{B R}$. Effect:

$$
\text { At }|z|=\infty: 1 \in \underset{n}{\operatorname{Diff}(\mathbb{n}} \mathbf{(})=N
$$

- Thur is a magutiona coupling to a brace along

$$
\begin{gathered}
0 \times \mathbb{C}_{z_{1}} \times 0 c \mathbb{R} \times \Phi^{2} . \\
\alpha \in \Omega^{0}(\mathbb{R}) \otimes \Omega^{0,1}\left(\mathbb{C}^{2}\right) \\
\pi \\
\vdots \\
\vdots \\
\Omega^{0}(\mathbb{R}) \otimes a^{2} z \\
\Omega^{2,1}\left(\mathbb{C}^{2}\right) \\
\partial^{-1} \alpha \in \Omega^{0}(\mathbb{R}) \otimes \Omega^{1,1}\left(\mathbb{C}^{2}\right) .
\end{gathered}
$$

Souree tam

$$
\int_{0 \times \mathbb{0} \times 0^{\sim}} \partial^{-1}\left(d^{2} z \wedge \alpha\right)
$$

EOM in presele of brave :

$$
\begin{gathered}
3-\text { fom } \\
u
\end{gathered}
$$

$$
(\partial+\bar{\partial}) \partial \alpha+\frac{1}{2} \partial\{\alpha, \alpha\}=\delta_{0 \times 0 \times 0}
$$

$$
\begin{aligned}
& \int \alpha(d+\bar{\partial}) \alpha+\cdots \\
= & \int \alpha(d+\bar{\partial}) \partial^{-1} \alpha+\cdots
\end{aligned}
$$

A soln is

$$
\alpha_{B R}=\frac{\bar{z}_{2} d t-\bar{z}_{1} d \bar{z}}{\left(t^{2}+\left|z_{2}\right|^{2}\right)^{3 / 2}}
$$

This is like a deforacation of

$$
\begin{aligned}
& \mathbb{R} \times \mathbb{\Phi}^{2} \cdot \mathbb{C}_{z_{1}}<\mathbb{R} \times S^{2} \\
\simeq & (\mathbb{R} \times \mathbb{C} \cdot 0) \times \mathbb{C}_{z_{1}}
\end{aligned}
$$

as a THF manifold.

The term $\int \partial^{-1} \alpha$ gives rise to

$$
\mathbb{C}_{\text {立 }} \quad\left\{S+\int \partial^{-1} \alpha, S+\int \partial^{-1} \alpha\right\}_{B V}
$$

an anomaly.

$$
\begin{aligned}
& \text { ly. // } \quad c \in \sim_{z_{1}}^{0} \\
& \int_{c_{z_{1}}} c \partial_{z_{1}} \alpha \cdot \alpha \in \Omega^{0} \otimes \Omega_{z_{1}}^{0,1} \\
& \mathbb{E}_{z_{1}} \quad C_{\text {ixe }}^{0}\left(y_{\text {grav }} l_{\text {blave }}\right) \text {. } \\
& A=C \cdot\left(u^{0}(\mathbb{R}) \otimes n^{0 ;}\left(\mathbb{C}^{2} \mid\right)\right. \\
& \text { P.B. } \\
& \simeq C^{\circ}\left(\Phi\left[z_{1}, z_{2}\right]\right)
\end{aligned}
$$

As a vertex olgebso olang z_{1} plave.
At leae of KD this is like - centrol dharge.

Consider

$$
\int_{\Phi^{x} \subset \mathbb{E}_{t_{1}}} A \simeq C^{\cdot}\left(\mathbb{C}\left[t_{1}^{ \pm}, z_{2}\right]\right)
$$

This is dy alyebrer. As such:

$$
\left(\int_{c^{*}} A\right)^{!} \simeq u\left(\mathbb{C}\left\lceil\tau_{\hbar}, z_{1}, z_{2}\right\rceil\right)
$$

Have contr ext of

$$
\begin{array}{rl}
\mathbb{L} & \longrightarrow H \\
(f, g) & \longrightarrow \mathbb{C}\left[z_{1}^{ \pm}, z_{2}\right] \\
\oint_{z_{1}} & \left.f \partial g\right|_{z_{2}=0}
\end{array}
$$

First term in central ext. foo

$$
w_{1+\infty}
$$

$$
\mathbb{R} \times 0 \subset \mathbb{R} \times \mathbb{C}^{2}
$$

$\sim \mathbb{R} \times \mathbb{Q}^{2} \backslash \mathbb{R} \times 0 \cong \mathbb{R} \times\left(\mathbb{C}^{2}-0\right)_{N}$

$$
\simeq \mathbb{R} \times\left(s^{3} \times \mathbb{R}\right)_{N}
$$

$$
\begin{aligned}
& 0 \times \mathbb{C} \times 0 \subset \mathbb{R} \times \mathbb{C}^{2} \\
& m \underset{N}{\mathbb{R} \times \mathbb{C}^{2}-\mathbb{C}} \cong(\mathbb{R} \times \mathbb{C}-0)_{N} \times \mathbb{C} \\
& \simeq\left(\widetilde{S^{2} \times \mathbb{R}}\right)_{N} \times \mathbb{C}
\end{aligned}
$$

$$
(\mathbb{R} \times \mathbb{C}) \times 0
$$

Summain: $A=$ alg of op's in grauity
$B_{N}=$ alg of op's on braw.

Sps $A=C^{\prime}\left(g_{\text {grow }}\right)$. Nosurly, the coupling

$$
U_{g_{\text {graw }}} \longrightarrow B_{N}
$$

is modified by the baclu reaction
Electric: $A^{!}=U$ ggraw \sim

$$
\begin{array}{r}
\tilde{A}_{N}^{!}=u_{\text {grov }} / \text { contral elut } \\
=f(N) .
\end{array}
$$

Magnetir: $A^{\prime}=U$ garau m

$$
\tilde{A}_{N}^{!}=u_{\phi g_{\text {grau }}}=u\left(\widehat{g}_{\text {grau }}\right)
$$

Holography is the stature that

$$
\stackrel{A}{N}^{\sim} \xrightarrow{\sim} B_{N} \quad \text { As } N \rightarrow \infty \text {. }
$$

(4) Computing $\tilde{A}!$.

I now want to give a Systematic approach to computing $\tilde{\mathcal{A}}$.

- Ignore bachreaction. Let's also assume that $A=C^{\prime}\left(g_{\text {gran }}\right)$. Thun, there is a cacoriceal coupling $\mathbb{1} \in A \otimes A^{\prime}{ }^{\text {Koszul }}$ dual dang the brave.

If (1) is operator in gravity they, write T_{0} for corresponding elout in A !. Coupling is $\int_{\text {brave }} \tilde{0} T_{0}$.
$\mathcal{E}: \mathbb{R} \times\{0\} \subset \mathbb{R} \times \mathbb{C}^{2}$.
Observalthe for thry an $\mathbb{R} \times \mathbb{T}^{2}$

$$
\begin{aligned}
& 0[k, l] \stackrel{\text { linew }}{\in} C\left(g\left[z_{1}, t_{2}\right]\right) \\
& c \longmapsto \partial_{z_{1}}^{k} \partial_{z_{2}}^{l} c(0,0,0) .
\end{aligned}
$$

ghast

$$
T[k, \ell]=z_{1}^{k}, z_{2}^{\ell} \in u\left(g\left[z_{1}, z_{2}\right]\right) .
$$

Coupling

$$
\int_{\mathbb{R} \times 0} \partial_{z_{1}}^{*} \partial_{z_{2}}^{\ell} A(t) T[k, \ell] .
$$

Gauge anomalies give rite to relations in A !. Typical Fegmanan diogram:

brave

Already, this diagram has an anomaly.

$$
\begin{aligned}
& \underline{\varepsilon_{x}:} O_{n} \mathbb{R} \times \mathbb{4}^{2} \\
& \left.\delta\left(\pi_{0,0}\right] p \sim \alpha_{\alpha}^{\alpha}\right)= \\
& \\
& \int_{\mathbb{R}_{t}} T[0,0] \partial_{z_{1}}{ }^{c} \partial_{z_{2}} \alpha(t) .
\end{aligned}
$$

To cancel this anomaly must
introdue a $T \cdot T$ OPE:

$$
[T[1,0], T[0,1]]=T[0,0] .
$$

Is anomaly free.
Thu are very intersetring quantum comefions.

Cookllo,

$$
\leadsto T T, T \mid \sim T^{2} \text { Gaitto-oh, } \text { oh-2how }
$$

Back reaction: for $\mathbb{R} \subset \mathbb{R} \times \mathbb{C}^{2}$.
Hover coupling

$$
\int_{\mathbb{R}_{t}} T[0,0] \propto(t) .
$$

In prese of the bach nation
(2) Interlude: couplings in BCOV

Our favorite "gravity" they is usually wilt from

$$
\begin{aligned}
& \text { closed string fired t } \\
& \text { of top } B \text {-model. }
\end{aligned}
$$

On a My X, focldo au

$$
\begin{aligned}
& \text { (} u^{j} p v^{i}, \cdot(x)\lceil 2\rceil \\
& i+j \leq n \\
& \bar{\partial}+u \gamma \\
& |u|=2
\end{aligned}
$$

- $\operatorname{dim}_{\mathbb{d}} X=3$ original defr of Bcov.
- Costello-Li extand defa to ay CY.

Wher $\operatorname{dim}_{₫} x=5$,
BCOV on holomorphe twist
$\mathbb{C}^{5} \simeq$ of Type IIB sOGRA

Hol CS holomorphic twist
on $\mathbb{C}^{5}=$ of $S Y M$.
11

$$
\begin{array}{r}
\text { Wortdvolume thy on } \\
\text { a D9 brame } \\
\frac{1}{2} \int \Omega \wedge\left(A \bar{\partial} A+\frac{1}{3} A[A, A]\right)
\end{array}
$$

$$
A \in \Omega^{00}\left(\mathbb{c}^{5}\right) \otimes g[1] .
$$

"BCOV is the uniursal they which couples to holompihz CS".

A coupling is

$$
\begin{aligned}
& J \in \bigoplus_{10 c}\left(\begin{array}{ccc}
\varepsilon & \ddots & \varepsilon_{n c s} \\
\mu & A
\end{array}\right) \\
& \int F(\mu, A)
\end{aligned}
$$

which is compatible w/ gauge Symmetry in \mathcal{E} and $\varepsilon_{\text {LeS }}$. \leadsto Sutisfins the BU CME

$$
\begin{aligned}
& \delta_{C E, E} J+\left\{S_{\text {ncs }}, J\right\} \\
& +\frac{1}{2}\{J, J\}=0
\end{aligned}
$$

Equivolertly,

$$
J: \varepsilon^{[}[-1] \sim \sigma_{\text {Loc }}^{\text {Lom }}\left(\varepsilon_{\text {ncs }}\right)[-1]
$$

$$
\begin{aligned}
& \varepsilon x: \text { on } c-13 x \\
& \varepsilon=\varepsilon_{600 v} \\
& \frac{-2}{P V_{n}^{0}} \\
& P V^{\prime \prime} \rightarrow \text { u } P V^{\circ}{ }^{\circ} \\
& P v^{2} \eta^{2} \rightarrow u P v^{\prime \prime} \rightarrow u^{2} \rightarrow u^{2} p v^{0 .} .
\end{aligned}
$$

- η couples via

$$
\int_{x} \eta \operatorname{Tr}(A) \wedge \Omega
$$

- μ couples via

$$
\frac{1}{2} \int_{x}[\mu \vee \operatorname{Tr}(A \partial A)] \wedge \Omega
$$

Not quite an allowed coupling, only if $\partial \mu=0$. On the other hal can ord

$$
\frac{1}{2} \int v \operatorname{Tr}\left(A^{3}\right)
$$

- π couples

$$
\frac{1}{6} \int n \operatorname{Tr}(A \partial A \partial A)
$$

Again only consistent if $\partial \Pi=0$. Need to ald

$$
\begin{aligned}
& \int \pi^{(1)} \operatorname{Tr}\left(A^{3} \partial A\right) \\
+ & \int \Pi^{(2)} \operatorname{Tr}\left(A^{5}\right)
\end{aligned}
$$

In the above formulas, hove been implaitly working $\omega /$ a matrix

Lie algetree g. Now $g=g l_{N}$.

- LQT. $A=d y$ algebra

$$
\begin{aligned}
& \operatorname{Sym}[C y c \cdot(A)[-1\rceil] \xrightarrow{\simeq} C(\operatorname{gl}(A)) \\
& C^{\prime}\left(\operatorname{gl} \ln _{N}(A)\right)
\end{aligned}
$$

In this example $A=\Omega^{0}(x)$.
Thu

$$
g l_{N}\left(\Omega^{0} \cdot(x)\right)=\begin{aligned}
& \text { firlds of } g l_{N} \\
& \text { hes they. }
\end{aligned}
$$

~)

$$
\begin{gathered}
C\left(g l_{N}\left(\Omega^{0,}\right)\right)=\text { observables of } \\
\uparrow \\
C^{\prime}\left(g l_{\alpha}\left(n^{0 ;}\right)\right)=\begin{array}{c}
\text { hare } N \\
\uparrow
\end{array} \\
C_{y c}\left(n^{0, j}\right)[-1]
\end{gathered}
$$

HER:

$$
Q_{\text {bol }}(x) \stackrel{\cong}{\cong} \operatorname{Hoch}^{-}\left(\omega_{x}\right)
$$

is vesolve

$$
P V^{\circ}(x) \stackrel{\simeq}{\leftrightarrows} \text { Hoch }\left(\sim^{0}{ }_{x}^{\cdot}\right)
$$

(2, cyelic

$$
\left.\begin{array}{cc}
p u^{\circ}(x)\|u\| & \longrightarrow
\end{array}\right] \operatorname{Hoch}\left(r^{j_{i}}\right) \llbracket\|\|]
$$

Comes's B opents.
RHS is Cyo ($\left.n^{0 \prime} x\right)$.
Abstruty

$$
P v_{x}^{\therefore} \pi u \| \quad \quad \longrightarrow \quad C^{\cdot}\left(g l_{\infty}\left(n_{x}^{i_{x}}\right)\right.
$$

(3) Braves in topl string
B-model on \mathbb{C}^{n}. Brace is Podled by cplx subunfld. wher

$$
\mathbb{c}^{n} \subset \mathbb{4}^{n}
$$

ther foclds on brave are

$$
\begin{aligned}
& \operatorname{Ext}_{\mathbb{C}^{n}}\left(6_{\mathbb{C}^{k}}^{\oplus N}, \vartheta_{\mathbb{C}^{k}}^{\oplus^{N}}\right) \\
\simeq \quad & \Omega^{0}\left(\mathbb{C}^{k}\right)\left[\varepsilon_{1}, \ldots, \varepsilon_{n-k}\right] \otimes g l_{N}
\end{aligned}
$$

When u is odd, this car be rhought of as kCS on

$$
k^{k \mid u-k} .
$$

