

• Sources : In genuel, thee
will be fields in the gravitational
spacetime X thy which "source" a
brave.
In physical string thy, the on
fields, called potentials, in the thy

$$C^{(p)} \in N^{p}(X)$$
.
Which source a p-dime brave
 $L \subset X$ via $p=1$ multism for
 $\int C^{(p)} = \int \delta_{L \subset X} C^{(p)}$.

5.t.

Pertubative field thy Los algebras
in BU finds
$$(1)^{\circ}$$
 cyclic str."
 $S:(fields) \rightarrow C$
 $\{-, -\}$ BU brochet
 $-(0(fields) \times (0(fields) \rightarrow (0(fields))[i]))$
 $\{S, S\} = 0$ $(4, 2, 4) + \int (0(4, 2, 4)) + \cdots$
 $\{S, S\} = 0$ $(=)$ Lo retry.

 $d(c equ \text{ for } f(=) \neq OM$ D(x) = O. T non-lim PDE. $Sps x \text{ sourced by a brown } f(c \times),$ $then there is a term in the hograngian
<math display="block">\int dt = \int x \wedge S$

 $\int d = \int d \wedge \delta_{z \in \dot{X}}.$

EOM get's modified

$$\mathcal{D}(x) = S + c \times \cdot (x)$$

Our way to think about this is as a "Mc equ" for a

where
$$d_{12}$$
 algebra
Note that the curving is bould be
to the brane.
A sola to (e) is called a "back
reaction" $d = d_{BR}$.
 d_{BR} will have singularities along
the brane. I Define the they
away from locues of brane.
 $\chi - \chi$ Boelogoound when
 $d = d_{BR}$.

Two points of view:
1) Thy on X i & is deformed.
Alg of operators at as in this
New background

$$\widetilde{A}_{ds} \xrightarrow{-}_{N \to as} \mathbb{P}_{N}$$

? II
 $\widetilde{A}_{ds} \xrightarrow{-}_{N \to as} \mathbb{P}_{N}$
 $\widetilde{A}_{ds} \xrightarrow{-}_{N \to as} \mathbb{P}_{N}$

magnetic source for
$$p$$
-dim^d will bole like $\int d^{-1} \alpha$.
 $\chi^{P} \subset \chi$

$$\delta(5' \alpha)$$
: $D(\alpha, d\alpha, ...) = \delta_{X \subset X}$
 $\sim \alpha_{BR}$
 $\sim \alpha_{BR}$

2) They is anomalous. The anomaly
defines some central extension
of the gravitational fields
along the brane.

$$(-)$$
 fields $-$ fields
ownedy sins resc
 $defines$ $defined of$.
 $A = C(g)$ $(-)$
 $A = C(g)$.
Have
 $\tilde{A}_{\infty} = \hat{A}^{-1}$

$$\begin{array}{c} R \times \left\{ o \right\} \subseteq R \times C^{2} \\ \text{Source term } N \int \alpha = N \int d^{n} \delta_{R} \\ R \times \left\{ o \right\} \quad I - \beta = \frac{1}{p} \int \frac{1}{p} \int$$

a brane along $\partial \times \mathcal{C}_{\frac{1}{2}} \times \mathcal{O} \subset \mathbb{R} \times \mathbb{C}^{2}$.

$$\mathcal{L} \in \mathcal{N}(\mathbb{R}) \otimes \mathcal{N}'(\mathbb{C})$$

$$\mathbb{R} \xrightarrow{1}{2} \mathbb{R}$$

$$\mathcal{N}(\mathbb{R}) \otimes \mathcal{N}'(\mathbb{C})$$

$$\mathbb{R} \xrightarrow{1}{2} \mathbb{R} \xrightarrow{1}{2} \mathbb{R}$$

$$\mathbb{R} \xrightarrow{1}{2} \mathbb{R} \xrightarrow{1}{2} \mathbb{R} \xrightarrow{1}{2} \mathbb{R}$$

$$\mathbb{R} \xrightarrow{1}{2} \mathbb{R} \xrightarrow{1}{2}$$

EOH in present of brane :

$$(J+\overline{J}) \overline{\partial x} + \frac{1}{2} \overline{\partial [x,x]} = \frac{3-fon}{0 \times 0 \times 0}$$
.

$$\int \propto (d + \overline{o}) \propto + \cdots$$

$$= \int \propto (d + \overline{o}) \overline{o} \overline{o} \times + \cdots$$

$$A \qquad \text{solution}$$

$$A \quad \text{$$

term [5' x gives rise to The C*, {S+ [5'x, S+ [5'+] BV anoncely. on C₂ C'ide (L'grav) Jiane). $= C(\Lambda(\mathbb{R}) \otimes \Lambda^{\circ}(\mathbb{C}^{2}))$ A = $(\langle \langle \langle \langle \langle \langle \rangle \rangle \rangle \rangle \rangle \rangle \rangle)$ As a vertex algebra along 2, plane. At level of KD this is like a central charge.

(ouside $\int \mathcal{A} \simeq C\left(\mathcal{C}\left(\frac{1}{2}, \frac{1}{2}\right)\right)$ ¢× c ¢. This is dy algebra. As such : $\left(\int \mathcal{A}\right)^{1} \simeq \mathcal{U}\left(\mathcal{C}\left[\frac{1}{4}, \frac{1}{2}\right], \frac{1}{2}\right)$ Howe control ext of $(f_{ig}) \rightarrow f_{2g} = 0$ First term in central ext. for W_{1+4}

$$\begin{array}{c} \mathbb{R} \times \mathcal{O} \subset \mathbb{L} \times \mathbb{C}^{2} \\ \end{array} \\ \begin{array}{c} \mathbb{R} \\ \mathbb{$$

ox Qxo < Px¢ $\sim h \times c^2 - c \cong (h \times c - 0) \times c$ $= (S^2 \times R) \times C$ "THF" $(\mathbb{R} \times \mathbb{C}) \setminus \mathbb{O}$

Summary:
$$A = \alpha \log \alpha f \circ \rho s$$
 in
gravity
 $B_N = \alpha \log \alpha f \circ \rho s$ on
brow.

Sps A = C'(ggrow). Norwely, the coupling Uggrau -) BN is modified by the back reaction Electric : A = U gyrow ~ AN = Uggrov/control elect Magnetic: A = U garav ~~) $\widetilde{\mathcal{A}}_{N}^{!} = \mathcal{U}_{\phi} ggrou = \mathcal{U}(\widetilde{g}grow).$

$$E_{X}: \mathbb{R} \times \{0\} \subset \mathbb{R} \times \mathbb{C}^{2}.$$
Observables for they as $\mathbb{R} \times \mathbb{C}^{2}$

$$(interial conditions)$$

$$(0 [k, 2] \in \mathbb{C}(9 [k, k]))$$

$$C \longmapsto \mathcal{D}_{k} \mathcal{D}_{k}^{2} \subset (0, 0, 0).$$

$$gloch$$

$$T[k, 2] = k 2^{k} 2^{k} e U(9 [k, k]).$$

$$(oupling)$$

$$\int \mathcal{D}_{k} \mathcal{D}_{k}^{2} \mathcal{D}_{k} A(t) T[k, 2].$$

$$\mathbb{R} \times 0$$

brane
Already, this diagram has an
anomaly.

$$E_X : O_A R \times d^2$$

 $S\left(TTO_1 \circ T_A \land A\right) = \int T_1 \circ 2 \circ 2 \circ A (t)$
 $R \times d^2$

Back reaction: for
$$R \subset R \times C^{\perp}$$
.
Howe coupling
 $\int T[0,0] \times (t)$.
 R_t
In preserve of the back reaction

D Interlude: couplings in BCOV
Our favorite "gravity" they is usually
built from
BOU thy = closed string field they
BOU thy = of tope B-model.
On a CY X, fields and
E)
$$u^{j} P V^{i}$$
, $(X) [br]$
i+j ≤ n
 $J + u D$
 $|u| = 2$

- · d'in CX = 3 original defn of BLON
- · Costello-L: extend defn to any CY.

When dimax = 5,

- BCOV on holomorphic twit C⁵ of Type IB SUGRA
- Hol CS holomorphic twict on $C^5 = of SYM$.

(World volume thy on a D9 trane

 $\frac{1}{2}\int n \wedge \left(A\overline{\partial}A + \frac{1}{3}A\overline{\Lambda}A\overline{\Lambda}\right)$

$$A \in \mathcal{N}^{\prime}(\mathcal{C}^{\prime}) \otimes \mathcal{G}^{\prime}(\mathcal{C}^{\prime})$$

"BCOV is the universal they which couples to holonwight CS".

 $\int_{cE,E} J + + \left\{ S_{hcs}, J \right\}$ $+ \left\{ \frac{1}{2} \left\{ J, J \right\} \right\} = 0$

Equivalently, $J: \mathcal{E}[-1] \longrightarrow \mathcal{O}_{WC}(\mathcal{E}_{HCS})[-1]$

 E_X : On C73 X $E = E_{bcov}$

 $\frac{-2}{PV_{V}^{\circ,i}} \qquad \frac{-1}{PV_{V}^{\circ,i}} \qquad \frac{2}{PV_{V}^{\circ,i}} \qquad \frac{1}{PV_{V}^{\circ,i}} \qquad \frac{1}{$

• T couples

$$\frac{1}{6}\int T Tr (A \partial A \partial A)$$

× Not quite an allowed coupling, only
if
$$\partial \mu = 0$$
. On the other had
con add
 $\frac{1}{2}\int v Tr(A^3)$.

•
$$h$$
 couples via
 $\int h Tr(A) \wedge \Lambda$
 χ

Again only consistent if
$$\partial \Pi = \partial$$
.
Ned to add
 $\int \Pi^{(1)} \operatorname{Tr} \left(A^{3} \partial A \right)$
+ $\int \Pi^{(2)} \operatorname{Tr} \left(A^{5} \right)$.

In the above formulas, have
been implicitly working
$$w/a$$
 matrix
his algebra g . Now $g = g R_N$.

•
$$LQT$$
. $A = dg$ objebre
 $Sym[Cyc(A)Fin] \xrightarrow{\simeq} C(gl_{o}(A))$
 $\int C(gl_{N}(A))$

In this example
$$A = \Lambda^{\circ,i}(X)$$
.
Thue
 $g_{N}\left(\Lambda^{\circ,i}(X)\right) = \begin{array}{c} f_{i} ll_{i} \circ f_{i} g_{i} l_{i} \\ hcs f_{i} l_{i} \circ f_{i} g_{i} l_{i} \\ hcs f_{i} l_{i} \circ f_{i} \end{array}$

 $C^{i}\left(g_{N}\left(\Lambda^{\circ,i}\right)\right) = \begin{array}{c} observables \\ hcs f_{i} f_{i} \\ hcs f_{i$

PV hor (X) ->> Hoch (UX)

 P_{X} [M] $\longrightarrow C(gl_{\alpha}(N_{X})).$

