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Today, I’d like to discuss a novel expansion of superconformal
indices of U(N) gauge theories at finite N.

When a holographic description is available, the formula expresses
the index as a sum over stacks of certain branes in the dual string
theory. These branes are so-called “giant graviton” branes wrapping
R× Sn ⊂ AdS ×M for M a compact manifold. They are
particle-like in AdS but extend in the compact directions.



One of the central questions in quantum gravity is to understand
and enumerate the microstates of black holes.

More precisely in the BPS sector, the question is the following:
What is the Q-cohomology class of operators whose degeneracies
give rise to those of BPS black holes at large energies/charges?

Holography, of course, makes this possible in principle. In recent
years, there has been great progress in showing that the gauge
theory index reproduces the entropy of BPS black holes in the
gravity dual.1

However, the precise understanding of the operators, rather than
their counting, has been missing.

1See works by Cabo-Bizet, Cassani, Martelli, Murthy, Choi, J. Kim, S. Kim,
Nahmgoong, Benini, Milan, Honda, Arabi Ardehali, and more.



The index formula I discuss today conjecturally captures the
1/16-BPS sector (up to signs) of U(N) N = 4 super Yang-Mills in
four dimensions at finite N, in terms of strings and branes in
AdS5 × S5.

In gauge theory, such strings and branes correspond to determinant
operators and their modifications, dressed with usual operators of
the multi-trace form.

At order 1 regime of charges, this sector is described by
perturbative excitations of bulk strings. At order N2 regime of
charges, this sector is dominated by 1/16-BPS AdS black holes.
Our claim is that strings and giant graviton branes capture the
degeneracy of states at all regimes of charges.



In this talk, I will consider the canonical example of the duality
between IIB strings on AdS5 × S5 and U(N) N = 4 super
Yang-Mills, but similar expansion formulas apply to other
holographic SCFTs such as the M2 worldvolume theory.

In particular, the Schur specialization of the N = 4 SYM index
gives the supersymmetric partition function of the U(N)-gauged
beta-gamma system in twisted holography.



AdS/CFT and indices

Before we get there, let’s review what holography says about
partition functions and indices.

A way of stating AdS/CFT is as an equivalence of partition
functions

ZAdS×M = ZCFT ,

where the bulk metric and fields are supplemented with boundary
conditions that specify the dual CFT.



The path integral of AdS quantum gravity, in the leading
approximation at large N, can be computed as a sum over saddle
geometries that asymptote to AdS ,

ZAdS =
∑

geometries

e−S .

This sum namely includes pure AdS and many families of AdS black
holes.



The statement of AdS/CFT descends to the (much more tractable)
equivalence between the indices of gauge/string theories:

ZAdS×M = ZCFT .

In gauge theory, the superconformal index

ZCFT = TrHBPS (−1)F e−
1
2β{Q,Q

†}

captures the BPS sector of the full Hilbert space, which is protected
by superconformal symmetry. Sectors which are not BPS carry an
equal number of bosons and fermions, which cancel due to (−1)F .
BPS states/operators are annihilated by the Poincaré/conformal
supercharges Q,Q†, so e−

1
2β{Q,Q

†} evaluates to 1.



It is helpful to “refine” the index by organizing the Hilbert space
into representations that transform under the global symmetry
charges Ci :

ZCFT = TrHBPS (−1)F e−
1
2β{Q,Q

†}yC1
1 yC2

2 · · · yCss ,

for charges Ci that commute with Q,Q†. The fugacities yi are
related to chemical potentials as yi = e−µi .

The coefficient of fugacities yi in the index gives the degeneracy of
BPS states with corresponding charge numbers, up to signs.



The index is topological; it is invariant under continuous
deformations such as the change in couplings, size of manifold, or
RG flow. Since we can continuously deform the CFT to a free
theory and compute the index there, the index is much more
tractable than a partition function.



Summing over geometries

Given that the CFT partition function ZCFT is dual to a sum over
geometries that asymptote to AdS ×M, one may wonder whether
the index ZCFT can be expressed directly as a sum over geometries.



Indeed, there has been much recent progress in finding black hole
saddles for the index of N = 4 SYM. In particular, ZN=4 can be
expressed at large N as a sum over an infinite family of saddles as 2

ZN=4 =
∑
m,n

e−N2Seff(m,n;τ)

N2Seff(0, 1; τ) = 0 (pure AdS)

N2Seff(1, 0; τ) = FBH(τ) (AdS BH).

FBH agrees with the free energy of a 1
16 -BPS black hole in AdS5,

computed with supersymmetric boundary conditions.

2Cabo-Bizet, Murthy ’19; Cabo-Bizet, Cassani, Martelli, Murthy ’20



This formula is valid as an asymptotic expression at large N, and
they capture the degeneracy of states at order O(N2) in the
charges.



Summing over strings and branes

In this talk, I’d like to present a different expansion of the U(N)
gauge theory index, where objects in the sum have a natural
interpretation in the dual string theory as D3 giant graviton branes
in AdS5 × S5.

ZN(x ; yi ) = Z∞(x ; yi )

[
1 +

∞∑
k=1

xkN Ẑk(x ; yi )

]
.





ZN(x ; yi ) = Z∞(x ; yi )

[
1 +

∞∑
k=1

xkN Ẑk(x ; yi )

]
.

The prefactor Z∞(x ; yi ) captures the perturbative spectrum at
infinite N, which can be matched with the supergraviton spectrum
in the bulk. The sum represents stacks of 0, 1, 2, · · · numbers of
D3 giant graviton branes wrapping R× S3 ⊂ AdS5 × S5.

The “brane indices” Ẑk(x ; yi ) are related to gauge theory indices
ZN(x ; yi ) by an involution acting on the fugacities. {x , yi} are a
collection of fugacities, but I’ve singled out the fugacity x
corresponding to a bosonic adjoint operator.

We emphasize that the expansion is a statement purely in the
gauge theory, though the objects involved admit very natural
interpretations in the bulk.



Let’s compare our expansion to the sum over geometries. One
expects to see the following in the spectrum of IIB string theory in
AdS5 × S5:
▶ At charges of O(1), perturbative excitations of AdS5 × S5

corresponding to supergravitons/strings
▶ At charges of O(N), non-perturbative excitations such as

D-branes
▶ At charges of O(N2), fully backreacted, highly excited

geometries such as BPS black holes

So the giant graviton expansion is quite different from the sum over
on-shell geometries, since branes contribute to the index at order
O(N) rather than O(N2) in the charges. Therefore, the sum over
branes is not a standard sum over saddles.



Before discussing the ingredients in more detail, let us mention
some strange and surprising properties of the expansion.



ZN(x ; yi ) = Z∞(x ; yi )

[
1 +

∞∑
k=1

xkN Ẑk(x ; yi )

]
.

(1) From the spectrum, one may expect that the giant graviton
expansion will break down at charges of O(N2) due to extra
contributions from saddle geometries. However, explicit
computations show that such contributions are not necessary. The
above expansion holds much beyond O(N2) of charges.



ZN(x ; yi ) = Z∞(x ; yi )

[
1 +

∞∑
k=1

xkN Ẑk(x ; yi )

]
.

This suggests that the sum over branes somehow already accounts
for the degeneracy of states coming from the sum over saddle
geometries at charges of O(N2). It does so in a “microscopic”
manner, interpolating between the O(1) charge regime of
perturbative excitations and O(N2) regime of geometries.



ZN(x ; yi ) = Z∞(x ; yi )

[
1 +

∞∑
k=1

xkN Ẑk(x ; yi )

]
.

A subtlety here is that the picture in terms of giant gravitons is
likely appropriate for small t’Hooft coupling λ, while saddle
geometries are valid at large λ. However, the index is agnostic
about λ.



ZN(x ; yi ) = Z∞(x ; yi )

[
1 +

∞∑
k=1

xkN Ẑk(x ; yi )

]
.

(2) The expansion also holds at low (even for zero and negative) N,
where the dual string theory is highly nonperturbative, i.e. when
the string coupling gs is large. In this regime, supergravity breaks
down so a black hole solution is not well-defined.

Despite this, the validity of the formula at low N suggests that
some remnant of the picture in terms of strings and branes persists
even in the large gs regime.



ZN(x ; yi ) = Z∞(x ; yi )

[
1 +

∞∑
k=1

xkN Ẑk(x ; yi )

]
.

(3) The validity for negative N suggests a combinatorial origin of
the formula. In fact, the expansion also applies to many index-like
quantities. This perhaps may be justified, as large N t’Hooft
combinatorics tells us that any U(N) gauge theory is dual to some
string theory, even if that string theory does not admit a
weakly-curved gravity description.



ZN(x ; yi ) = Z∞(x ; yi )

[
1 +

∞∑
k=1

xkN Ẑk(x ; yi )

]
.

(4) I’ve made a choice of the fugacity x , which corresponds to the
bosonic adjoint scalar X . In N = 4, there are two other equivalent
choices y , z corresponding to the fields Y ,Z . The choice of x , y , z
corresponds to the three independent ways to embed S3 ⊂ S5. It
turns out that considering just one orientation is sufficient to
reproduce the correct degeneracies, when we look at the series
expansion in x at fixed orders of y and z .



ZN(x ; yi ) = Z∞(x ; yi )

[
1 +

∞∑
k=1

xkN Ẑk(x ; yi )

]
.

A naive counting of all orientations will give redundant results, but
a careful counting of all three orientations gives a result that agrees
with our proposal. See work by Y. Imamura.3

3Imamura ’21



Let’s now derive the strings and brane terms in the expansion. To
do so requires some knowledge of how to compute superconformal
indices.



Computing the index

As mentioned before, the index can be computed in the free theory
where the couplings are turned off.

In a free theory, the computation becomes a combinatorial problem
of counting the ways in which different “letters” Li , corresponding
to BPS fields and their derivatives, can be combined into
gauge-invariant operators, which are polynomials of Li .



A standard trick to solve this problem is to first count all the single
letters Li , which one collects it into a function f (yi ) called the
single letter index. Then one applies an operation

PE [f (yi )] = exp

( ∞∑
n=1

1
n
f (yni )

)
,

called the plethystic exponential, which automatically counts the
ways in which Li are combined into polynomials.



For example, a N = 1 chiral multiplet (and its conjugate pair)
consists of two BPS fields: a bosonic scalar X and a fermion ψ̄X .
The single letters are BPS derivatives of these fields and take the
form

∂n1∂
m
2 X , ∂n1∂

m
2 ψ̄X .

In a certain basis of charges, we can assign them the following
fugacities:

pnqmx , −pn+1qm+1x−1.



Summing all such letters, we get the single letter index

f (x , p, q) =
∑
n,m

(x − x−1pq)pmqn =
x − x−1pq

(1 − p)(1 − q)
.

The generating function that counts the polynomials of the letters is

Z (x , p, q) = PE [f (x , p, q)] =
∏
n,m

1 − pn+1qm+1x−1

1 − pnqmx
,

which one may recognize as the elliptic gamma function Γ(x ; p, q).
Notice that the numerator came from fermions and the
denominator came from bosons. This is the index of a chiral
multiplet in a N = 1 theory.



In a U(N) gauge theory, there can be fugacities µa associated with
gauge charges, as well as fugacities yi for global symmetry charges.
In such cases, the single letter index takes the form

f (yi ) TrU TrU−1 = f (yi )
∑
a

µa
∑
b

µ−1
b

We project onto gauge-invariant polynomials of BPS letters by
treating µa as U(N)-eigenvalues and integrating over U(N):

ZN(yi ) =
1
N!

∫
dµ

2πiµa

∏
a ̸=b

(1−µaµ−1
b ) exp

( ∞∑
n=1

1
n
f (yni )

∑
a

µna
∑
b

µ−n
b

)
.

the extra factor in the measure is the Vandermonde determinant for
U(N). The integral extracts the singlet sector of the integrand
under the gauge group U(N).



O(1): Strings

We now derive the prefactor from closed strings in the formula

ZN(x ; yi ) = Z∞(x ; yi )

[
1 +

∞∑
k=1

xkN Ẑk(x ; yi )

]
.

This contribution is given by the index evaluated at N = ∞.

The U(N) index can be computed exactly in the limit where N is
taken to infinity. In this limit, the N-dependence drops out. It can
be shown that the gauge integral becomes gaussian and evaluates
to

Z∞(yi ) =
∞∏
n=1

1
1 − f (yni )



When considering brane contributions shortly, it will also be
important that the infinite N formula is readily generalized to
theories with (anti-)fundamental matter with indices v(yi ), v̄(yi ):

Z∞(yi ) =
∞∏
n=1

1
1 − f (yni )

PE
[ v v̄

1 − f

]
.



To ground ourselves, let’s take the very simple example of a U(N)
theory with a single adjoint scalar X without any derivatives. Here,
gauge-invariant operators look like TrX n, so we are counting
independent polynomials of TrX n, up to trace relations. Let’s take
N = ∞, so that there are no trace relations.

These polynomials are generated by

Level 0: 1
Level 1: Tr X ,

Level 2: Tr X 2, (Tr X )2

Level 3: Tr X 3, (Tr X 2)(Tr X ), (Tr X )3

Level 4: Tr X 4, (Tr X 3)(Tr X ), (Tr X 2)(Tr X 2),

(Tr X 2)(Tr X )2, (Tr X )4

and so on.



Let’s now check the operator counting against the gaussian
formula. The single letter index here is just f = x . At infinite N,
the generating function is

Z∞(x) =
∞∏
n=1

1
1 − xn

= 1 + x + 2x2 + 3x3 + 5x4 + · · · ,

which matches the counting.



The U(N) N = 4 SYM index is a variation on the same theme.
The index can be expressed in terms of fugacities x , y , z of three
adjoint scalars X ,Y ,Z and fugacities p, q for two BPS derivatives.
There are also conjugate fermions ψ̄X ,Y ,Z from the chiral
multiplets. The fugacities obey the constraint xyz = pq.

The single letter index can be collected into the nice form

f = 1 − (1 − x)(1 − y)(1 − z)

(1 − p)(1 − q)

with the infinite N index

Z∞(x , y , z , p, q) =
∞∏
n=1

(1 − pn)(1 − qn)

(1 − xn)(1 − yn)(1 − zn)
.

The power expansion coefficients count the independent
gauge-invariant polynomials of 1/16-BPS N = 4 SYM operators,
up to signs and with no trace relations.



It is a standard result that infinite N index of N = 4 SYM agrees
with the supergraviton spectrum in AdS5 × S5. We have derived
the prefactor in the brane expansion formula that accounts for O(1)
perturbative excitations.



O(N): Giant graviton branes

Now let’s derive the brane terms that show up on the right hand
side of the formula

ZN(x ; yi ) = Z∞(x ; yi )

[
1 +

∞∑
k=1

xkN Ẑk(x ; yi )

]
.

It will be necessary to assume that N is large for the derivation.
The justification for the formula at finite N comes from direct
computational checks.



In N = 4 SYM, determinant operators have dimension N and are
known to be dual to D3 giant graviton branes that wrap
R× S3 ⊂ AdS5 × S5. Finite modifications of the determinants
correspond to open string excitations of these D3s.

So the index of determinant operators along with their
modifications in gauge theory will account for giant gravitons in the
holographic dual.



We start with a single determinant

detX ∝ ϵi1i2···iN ϵj1j2···jNX
j1
i1
X j2
i2
· · ·X jN

iN

of fugacity xN .

The determinant can be modified by replacing a finite number of
above X ’s by strings of letters in the theory. For example, we can
replace an X with L1L2L1 to get

ϵi1i2···iN ϵj1j2···jN (L1L2L1)
j1
i1
X j2
i2
· · ·X jN

iN
.

There are some redundancies with counting such modifications,
though. An example is a replacement of the form X → XW , where
antisymmetry allows one to write TrW detX . We will interpret
these redundancies as closed strings and include them back later.
For now, let’s focus on the nonredundant part that corresponds to
open strings.



A helpful reformulation of the problem is to write the determinant
as an integral over auxiliary (anti-)fundamental fermions∫

dψ̄dψ eψ̄Xψ.

Introducing (anti-)fundamental fermions adds “boundaries” to the
t’Hooft ribbon diagrams, which helps understand why determinants
should correspond to D-brane insertions.



In terms of the fermion integral, determinant modifications
correspond to operator insertions∫

dψ̄dψ eψ̄Xψ(ψ̄W1ψ)(ψ̄W2ψ) · · ·

where an open string excitation looks like ψ̄L1 · · · Lsψ.

The redundancy mentioned above becomes a Ward identity for the
fermions∫

dψ̄dψ eψ̄Xψ(ψ̄XWψ)(ψ̄W1ψ) · · · =∫
dψ̄dψ eψ̄Xψ

(
d

dψ
(Wψ)

)
(ψ̄W1ψ) · · · .



We can implement the Ward identities by introducing bosonic
antifields u, ū, as well as a BRST differential δ acting as

δX = δψ = δψ̄ = 0

δu = Xψ

δū = ψ̄X .

For proper counting, we will need to posit that δ is an extra part of
the cohomological supercharge Q that acts nontrivially only on the
antifields u, ū.

We assign ghost numbers −1 to u, ū, +1 to δ, and 0 to other
fields. We are interested in operators in the BRST cohomology with
ghost number 0. The action of δ were written so that redundancies
due to replacements X → XW or X → WX become δ-exact.



The auxiliary fundamental and anti-fundamental letters are counted
by the single letters v = (x − 1)λ and v̄ = (1 − x−1)λ−1. λ
denotes a fugacity for an extra U(1) symmetry which only acts on
these auxiliary variables. It will drop out of calculations now but
will be useful soon.



One problem with this approach is that there is cohomology in
non-zero ghost number. The operator ψ̄Xψ can come from either
δ(ψ̄u) and δ(ūψ), so the combination ψ̄u + ūψ will be δ-closed but
not exact. It gives a fermionic zeromode with ghost number −1
and trivial fugacity. As this operator is the only problematic one, we
will simply remove the zeromode by hand in our counting.



Let’s now look back at the large N gaussian index formula with
(anti-)fundamentals

Z∞(yi ) =
∞∏
n=1

1
1 − f (yni )

PE
[ v v̄

1 − f

]
,

which I mentioned would be useful. The infinite prefactor is the
redundant closed string sector, which we’ll ignore for now.



The large N formula suggests that the “effective” single letter index
governing the determinant fluctuations is

f̃ = 1 +
v v̄

1 − f
= 1 − (1 − x)(1 − x−1)

1 − f

where the extra factor of 1 cancels the zeromode.

Therefore, modifications of a single determinant, with the
redundant sector stripped off, are counted by the tilded index

Z̃1 = PE [f̃ ].



Perhaps a more enlightening rearrangement of the relation between
f and f̃ is

(1 − f )(1 − f̃ ) = (1 − x)(1 − x̃),

with x̃ = x−1. This relates the gauge theory index and the
determinant modification index via the involution ∼.



Let’s apply this relation to the single adjoint matrix case with
f = x . We get

f̃ = x̃ = x−1.

This makes sense. Here, the only nontrivial operator is X , so any
modification of the determinant would correspond to replacing X
by the identity I . This would take away a single power of fugacity
x , thus the inverse.



For N = 4 SYM, we get

f̃ = 1 − (1 − x̃)(1 − p)(1 − q)

(1 − y)(1 − z)
,

with x̃ = x−1. So the determinant modification index is related to
the gauge theory index only by the exchange of fugacities

x ↔ x̃ , p ↔ y , q ↔ z .

The determinant index should then be interpreted as a U(1) gauge
theory index on the worldvolume of a single D3 giant graviton,
where the angular momentum and charge fugacities are swapped. x
is mapped to its inverse, because determinant modifications remove
X ’s.



It is straightforward to consider the modifications of k determinants
using the fermion description with k flavors of fermions.

(detX )k =

∫
dψ̄dψ eψ̄

αXψα

∫
dψ̄dψ eψ̄

αXψα(ψ̄βW1ψγ)(ψ̄
δW2ψϵ)

Insertions with different fermion indices now correspond to open
strings stretched between different pairs of k coincident giant
graviton branes.



The only difference from the previous case is that there is an
emergent U(k) gauge symmetry on the giant graviton
worldvolumes that must be imposed. For proper counting, we
should also subtract k2 fermion zeromodes by hand.

Modifications of k determinants are described by the index

Z̃k(x̃ ; yi ) =
1
N!

∫
dλ

2πiλa

∏
a ̸=b

(1−λaλ−1
b ) exp

( ∞∑
n=1

1
n
f̃ (yni )

∑
a

λna
∑
b

λ−n
b

)
,

with f̃ defined in the same way as in the U(1) case. λa are
fugacities for an extra U(N) symmetry that only act on the
auxiliary variables. It dropped out for U(1), but they become gauge
fugacities for U(N).



Let’s put back in the closed string sector and the bare fugacity xkN

for k determinants. The index of k giant gravitons and their
fluctuations is

xkNZ∞(x ; yi )Z̃k(x̃ ; yi ).

xkN is the fugacity of the bare determinant (detX )k , Z∞(x ; yi ) are
background excitations of AdS5 × S5, and Z̃k(x̃ ; yi ) are open string
excitations on k coincident giant gravitons.



Summing over strings and branes

The expansion formula is simply a sum of the above ingredients
over all numbers of D3 giant gravitons:

ZN(x ; yi ) = Z∞(x ; yi )

[
1 +

∞∑
k=1

xkN Ẑk(x ; yi )

]
.

The fugacities x̃ in Z̃k have been analytically continued outside the
unit disk in the index Ẑk , so that |x̃−1| = |x | < 1 in Ẑk . The
analytic continuation is tractable in many explicit examples,
because the infinite series in x can often be resummed to a rational
function.



We derived the individual ingredients, i.e. strings and branes, in the
expansion formula but have not justified analytically that the sum of
these ingredients gives the finite N superconformal index. However,
explicit computations provide good evidence that the index formula
is valid at any order of the charges and for any integer N.

If the formula holds true, we are led to the conjecture that
determinant operators and their modifications, multiplied by usual
operators of the multi-trace form, exhaust the Q-cohomology at
finite N.

Strictly speaking, this conjecture applies at zero ’t Hooft coupling
in usual gauge theory. However, this conjecture should hold exactly
in twisted holography.



In the example of the single adjoint matrix, it is not difficult to
prove that the formula holds exactly:

ZN(x) :=
1∏N

n=0(1 − xn)
=

1∏∞
n=0(1 − xn)

∞∑
k=0

xkN∏k
n=0(1 − x−n)

.

For N = 4 SYM and its specializations, the formula can be verified
as a power series x , at any given powers of other fugacities yi . See
our paper for many checks; direct matching with black hole
degeneracies in progress.

That said, it would be interesting if there is a localization argument
that can be used to prove the formula.



Concluding remarks

It seems now that there are two different expressions for the index
of N = 4 SYM in terms of bulk objects.

One is a large N saddle expansion in terms of black holes, which
makes the macroscopic geometry manifest.

ZN=4 =
∑
m,n

e−N2Seff(m,n;τ)



The other is a finite N combinatorial expansion in terms of strings
and branes, which makes the bulk microstates of the BPS sector
manifest.

ZN(x ; yi ) = Z∞(x ; yi )

[
1 +

∞∑
k=1

xkN Ẑk(x ; yi )

]
.

Now that we have the exact microscopic ingredients, it would be
interesting to understand how the strings and branes reorganize
themselves into various geometries.



Thank you


