Addendum to Jihwan's Talk:
More on $\mathrm{Obs}^{\varepsilon_{1}}(M 2)$
Recall the setting:
Twisted M-theory on $\overbrace{\mu_{7}^{G_{2}}}^{A \text {-twist }} \times \frac{B \text {-twist }}{\mu_{4}^{H K}}$

In this talk, we will focus on the algebra of observables on M2 brave, notation: $O b_{s} \varepsilon_{1}(M 2)$

Recall. In Jihwan's talk, we see that $\mathrm{Obs}^{\varepsilon_{1}}\left(M_{2}\right)$ is the Coulomb branch algebra of $3 d \quad N=4$ quive gauge theory of with K gauge nodes

Or equivalently, it's the Wigs branch

$$
\begin{aligned}
& \varepsilon^{(2) y}{ }^{x, y} \text { "Arm } 2 \mathrm{M}^{\prime \prime}
\end{aligned}
$$

Remark (1) After turning on \mathcal{E}_{2}, it gives rise to a mass deformation of $M_{c}, \Leftrightarrow F I$ parameter in M_{H},

$$
[x, y]+I J=\varepsilon_{2} \cdot I d
$$

(2) $M_{H}^{\varepsilon_{1}, \varepsilon_{2}}$ is a quantization of $M_{H}^{\varepsilon_{2}}$
(4) If seems more convenient working with genenters and relations of $M_{H,}^{\varepsilon_{1} \varepsilon_{2}}$ if we want to Compare it with $O b_{s}^{\varepsilon_{1}}(5 d C S)$,
so we work with Highs branch instead of Coulomb branch.

Quarumm Moment Map \& Quantum Hamiltonian Reduction

Definition: Let g be lie alg $/ \mathbb{C} A$ be associate $a l y / \mathbb{C}$ $w . / a \quad g$-action, i.e. $\phi: g \rightarrow \operatorname{Der}(A)$

A quantum moment map for $(A, g \phi)$ is a Lie alg. homomorphism $\mu: \quad g \rightarrow A$ sit.

$$
[\mu(a), b]=\phi(a) \cdot b \quad a \in g, \quad b \in A
$$

Lemma

- Defmition: Suppose that (A, g, ϕ) has 9. moment. map μ, Let J be Left ideal of A generated by $\mu(g)$, then $J^{g}=J \cap A^{g}$ is a two-sided ideal of A^{g}
proof Let $x=\sum b_{i} \mu\left(a_{i}\right) \in J^{g}$, and $y \in A^{g}$, then $x \cdot y=\sum b_{v} \mu\left(a_{v}\right) \cdot y=\sum b_{i} y \cdot \mu\left(a_{v}\right)+\sum b_{i}\left[\mu\left(a_{v}\right), y\right]$

$$
\begin{aligned}
& =\sum b_{i} \cdot y \cdot \mu\left(a_{v}\right)+\underbrace{\sum b_{i}\left(a_{i}\right) \cdot y}_{\prod_{0} \text { since } y \in A^{g}} \\
& \in J^{g}
\end{aligned}
$$

We call $A / / g:=A^{g} / J^{g}$ the quantum Hamiltamion reduction.

We can add FI parameters as following:
Let $x: g \rightarrow \mathbb{C}$ be a character of g, then define J_{χ} be left ideal generated by $\{\mu(a)-\chi(a) \cdot 1\}$ then J_{x}^{g} is 2 . sided ideal of A^{9},
so define $A_{x} / g^{g}=A^{g} / J_{x}^{g}$
(0)
0
(0)
$\left.\left.\left.\mathbb{C}^{N}\right) \oplus \operatorname{Hom}\left(\mathbb{C}^{k}, \mathbb{C}^{N}\right)\right)\right]\left[\varepsilon_{2}\right]$
In our situation, $A=\mathbb{C}^{\varepsilon_{1}}\left[T^{*}\left(E n d\left(\mathbb{C}^{N}\right) \oplus \operatorname{Hom}\left(\mathbb{C}^{k}, \mathbb{C}^{N}\right)\right)\right]\left[\varepsilon_{2}\right]$
A is generated by symbols $X_{i}^{j} Y_{k}^{l} I_{i}^{a} J_{b}^{\hat{j}}$
with relations: $\quad \operatorname{End}\left(\mathbb{C}^{N}\right) \quad \operatorname{Hom}\left(\mathbb{C}^{k}, \mathbb{C}^{N}\right) \operatorname{Hor}\left(\mathbb{C}^{v}, \mathbb{C}^{k}\right)$

$$
\left[X_{i}^{j} \quad y_{k}^{l}\right]=\varepsilon_{1} \delta_{i}^{l} \delta_{k}^{j},\left[I_{i}^{a} J_{b}^{j}\right]=\varepsilon_{1} \delta_{i}^{j} \delta_{b}^{a} \quad j l_{k}^{j, k i l}
$$

other Commutators are zero.

$$
a \cdot b g l_{k}
$$

$$
\begin{gathered}
g=g l_{N}:[X, y]_{i} j_{0}^{j_{0}}+(I J)_{j}^{j} \\
\mu: t_{i}^{j} \longmapsto X_{i}^{k} y_{k}^{j}-X_{k}^{j} y_{i}^{k}+I_{i}^{a} J_{a}^{j} \text { F-term }
\end{gathered}
$$

Remark: The definition of QMM should be modified as

$$
[\mu(a), b]=\varepsilon_{i} \cdot \phi(a) \cdot b \quad \begin{aligned}
& \mu \varepsilon_{2}=\mu-\varepsilon_{2} \cdot \operatorname{tr}(\cdot) \\
& t_{v}^{j} \mapsto \mu\left(t_{v}{ }^{j}\right)-\varepsilon_{2} \cdot \delta_{v}^{j}
\end{aligned}
$$

Taking q. Hamiltonian reduction, we get a $\mathbb{C}\left[\varepsilon_{1} \varepsilon_{2}\right]$
algebra $\mathbb{C}^{\varepsilon_{1}}\left[M_{N, k}^{\varepsilon_{2}}\right]$
Theorem $\mathbb{C}^{\varepsilon_{1}}\left[M_{N, k}^{\varepsilon_{2}}\right]$ is flat over $\mathbb{C}\left[\varepsilon_{1} \varepsilon_{2}\right]$
Sketch of proof: Introduce filtration on A by

$$
\begin{aligned}
& \operatorname{deg} X=\operatorname{deg} Y=\operatorname{deg} I=\operatorname{deg} J=1 \\
& \operatorname{deg} \varepsilon_{1}=0 \quad \operatorname{deg} \varepsilon_{2}=0
\end{aligned}
$$

Check that A is indeed filtered, $\mu\left(g l_{N}\right) \subset F_{2} A$
$\underline{C l a i n} \operatorname{gr} \mathbb{C}^{\varepsilon_{1}}\left[M_{N, k}^{\varepsilon_{2}}\right] \simeq \mathbb{C}\left[M_{N, k}^{0}\right]\left[\varepsilon_{1} \varepsilon_{2}\right]$
Classical Ham. reduction
It remains to prove the claim. Note that

$$
\operatorname{gr} \mathbb{C}^{\varepsilon_{1}}\left[M_{N, K}^{\varepsilon_{2}}\right] \simeq \operatorname{gr} A^{g l_{N}} / \operatorname{gr} J^{g l_{N}}
$$

so the claim follows from the following:
Lear: $g r J$ is generated by $[x, y]_{i}^{j}+I_{i}^{a} J_{a}^{\hat{j}}$ as left ideal. $i, j \in\{1, \cdots, N\}$

Sketch of proof Let $E_{i}{ }^{\hat{j}}=0[x, y]_{i}{ }_{0}+I_{i}^{a} J_{a}^{\hat{j}}-\varepsilon_{2} \delta_{i}^{\dot{j}}$
it's enough to show that:
(*) If $\sum f_{i}^{j} E_{i}^{j} \in F_{m} A$, then $\exists \bar{f}_{v}^{\hat{j}} \in F_{M-2} A$
s.t. $\sum f_{i}^{\hat{j}} E_{i}^{\hat{j}}=\sum \hat{f}_{i}^{\hat{j}} E_{i}^{\hat{j}}$.

The clam $(*)$ is a consequence of $\left\{E_{i} \hat{j}\right\}_{i, j \in\{1, \cdots, N\}}$ is a regular sequence in $\operatorname{gr} A$, so we can subtract leading terms of f_{i}^{j} if they are not in $F_{\text {M-2 }} A$, details omitted.

$$
\hbar, t
$$

Corollary $\mathbb{C}^{\varepsilon_{1}}\left[M_{N, k}^{\varepsilon_{2}}\right] \simeq M_{H}^{\varepsilon_{1}^{\prime} \varepsilon_{2}^{\prime}}$ (Figs branch alg.) for some $\varepsilon_{1}^{\prime} \varepsilon_{2}^{\prime}$
Proof, We see that $\mathbb{C}^{\varepsilon_{1}}\left[M_{N, k}^{\varepsilon_{2}}\right]$ and $M_{H}^{\varepsilon_{1}^{\prime} \varepsilon_{2}^{\prime}}$ are filtered quantizations of Conical sympleatic singularity $M_{N, k}^{0}, \varepsilon_{2}=0$
By the characterization theorem of filtered quantization (Ivan Losev), $\mathbb{C}^{\varepsilon_{1}}\left[M_{N_{1} k}^{\varepsilon_{2}}\right] \simeq M_{H}^{\varepsilon_{1}^{\prime} \varepsilon_{2}^{\prime}}$ for appropriate change of variables $\varepsilon_{1}^{\prime} \varepsilon_{2}^{\prime}$

Large-N Limit of $\mathbb{C}^{\varepsilon_{1}}\left[M_{N, k}^{\varepsilon_{2}}\right]$

This is subtle, since there is no embedding $M_{N, K}^{\varepsilon_{2}} \longrightarrow M_{N+1, K}^{\varepsilon_{2}}$ at classical level.
$\left(\right.$ (though there exists $\left.\phi_{N+1}^{N}: A_{N+1} \rightarrow A_{N}\right)$
There is no naive $\underset{N}{\lim _{N}} \mathbb{C}^{\varepsilon_{1}}\left[M_{N, k}^{\varepsilon_{2}}\right]$
Way Out: Study "Universal-in-N" instead.
See Costello's pager on M2
Definition A sequence $\left\{f_{N} \in A_{N}\right\}$ is called admissible of weight 0 if (1) f_{N} is $G l_{N}$-invariant
(2) $\phi_{N+1}^{N}\left(f_{N+1}\right)=f_{N}$
$\left\{f_{N}\right\}$ is called admissible of weight r if $\left\{N^{-r} f_{N}\right\}$
is admissible of weight 0 . Example: $\left\{N^{r}\right\}$
$\left\{f_{N}\right\}$ is called admissible if it's a linear sum of admissible sequences of various weights.

Remark: $\left\{f_{N}\right\},\left\{g_{N}\right\}$ admissible $\Rightarrow\left\{f_{N} g_{N}\right\}$ udnissible.
Definition. Denote by $\mathbb{C}^{\varepsilon_{1}}\left[M_{0, k}^{\varepsilon_{2}}\right]$ the algebra of admissible sequences modulo the ideal of adm. sen. in J_{N}

Lemra. $\mathbb{C}^{\varepsilon_{1}}\left[M_{0, k}^{\varepsilon_{2}}\right]$ is generated over $\mathbb{C}\left[\begin{array}{ll}\varepsilon_{1} & \varepsilon_{2}\end{array}\right]$ by

$$
J_{a}^{i}\left(X^{m} y^{n}\right)_{i}^{j} I_{j}^{b}, \operatorname{Tr}^{b}\left(X^{m} y^{n}\right), \quad \delta(\text { central })
$$

In fact, $\delta=\{N\}$ is admissible of weight 1 .
Theorem [Costello] Specialize ε_{2} to a nonzero number and localize over $\mathbb{C}\left(\left(\varepsilon_{1}\right)\right)$, there is an isomorphism.

$$
\mathbb{C}^{\varepsilon_{1}}\left(M_{\cdot, k}^{\varepsilon_{2}}\right) \simeq U_{\varepsilon_{1}}\left(D_{\varepsilon_{2}}(\mathbb{C}) \otimes g l_{k}\right)\left[\varepsilon_{1}^{-1}\right]
$$

RHS: A deformation of Univ, enveloping alg. of Lie algebra $D \varepsilon_{2}(\mathbb{C}) \otimes g l_{K}$
$K=1$ Case

Coulomb Branch Pant of View
Example: $N=1$:

$$
\left.H_{1 \text { guck }}^{*}\right]^{t}
$$

monopole operators $r_{1} r_{-1}$, equivarimat parameter t, ε_{1} relations:

$$
r_{1} r_{-1}=t \quad r_{-1} r_{1}=t-\varepsilon_{1} \quad\left[r_{1}, t\right]=\varepsilon_{1} r_{1} \quad\left[r_{-1}, t\right]=-\varepsilon_{1} r_{-1}
$$

For general N, Kodera and Naka ina show that $M_{c}^{\varepsilon_{1}}$ is isomorphic to Spherical part of graded Cheredrik algebra $e H_{N}^{g r} e$, where $H_{N}^{g r}$ is $\mathbb{C}\left[\varepsilon_{1} \varepsilon_{2}\right]$ algebra generated by $S_{1}, \cdots, S_{N-1}, X_{i}^{ \pm 1}, \omega_{i}(i=1, \cdots, N)$ ω. relations:

- $\left[\begin{array}{ll}\omega_{i} & \omega_{j}\end{array}\right]=\left[\begin{array}{ll}x_{i} & x_{j}\end{array}\right]=0$
$S_{1}^{(12)}, \cdots, S_{N-1}^{(N-1, N)}$ generate $\mathbb{C}\left[S_{N}\right]$
- $S_{i} \omega_{i}=\omega_{i+1} S_{i}-\varepsilon_{2} \quad S_{i} \omega_{i+1}=\omega_{i} S_{i}+\varepsilon_{2}$
$S_{i} \omega_{j}=\omega_{j} S_{i}$ otherwise
- $S X_{i}^{ \pm 1}=X_{s(v)}^{ \pm 1} s \quad s \in S_{N}$

$$
\text { - }\left[\begin{array}{ll}
X_{j} & \omega_{i}
\end{array}\right]= \begin{cases}\varepsilon_{2} X_{j} s_{j i} & \text { if } i>j \\
\varepsilon_{2} X_{i} s_{i j} & \text { if } i<j \\
\varepsilon_{1} X_{i}-\varepsilon_{2} \sum_{k<i} X_{k} s_{k i}-\varepsilon_{2} \sum_{k>i} X_{i} s_{i k} & \text { if } i=j\end{cases}
$$

Here $e=\frac{1}{N!} \sum_{g \in S_{N}} g$
Kodera and Nakajima show that $M_{c}^{\varepsilon_{1}}$ is quotient of $y_{1}^{\varepsilon_{1} \varepsilon_{2}}\left(\widehat{g l_{1}}\right)$ (1- shifted affine Yougrian of $\left.g l_{1}\right)$

Figs Branch Point of View
Definition, Let A be the $\mathbb{C}\left[\varepsilon_{1} \varepsilon_{2}\right]$ alg. generated by $\left\{t_{a, b}\right\}_{a, b \in \mathbb{Z}_{\geqslant 0}}^{d_{y}=a+b} \quad$ w.// relations:
to, central Fund $\otimes S^{k} \rightarrow S^{k-1}$ as $s h_{2}$-rep.

Nototim $\sigma_{2}=\varepsilon_{1}^{2}+\varepsilon_{2}^{2}+\varepsilon_{1} \varepsilon_{2}, \sigma_{3}=-\varepsilon_{1} \varepsilon_{2}\left(\varepsilon_{1}+\varepsilon_{2}\right)\left\{\begin{array}{c}\text { igenente by } \\ \left.t_{2,0} \text { t } t_{1,1} \text { to }\right\}\end{array}\right.$

$$
\begin{aligned}
\cdot\left[t_{3,0}, t_{0, n}\right] & =3 n t_{2, n-1}+\frac{3 \sigma_{2}}{2}\binom{n}{3} t_{0, n-3} \\
+ & \frac{3 \sigma_{3}}{2} \sum_{m=0}^{n-3}(m+1)(n-2+m) t_{0, m} t_{0, n-3-m}
\end{aligned}
$$

Remark. If we specialize to $\varepsilon_{1}=\varepsilon_{2}=0$, then

$$
A_{\varepsilon_{1}=\varepsilon_{=}=0} \simeq U\left(\left\{t_{a, b} \mid\left[t_{a, b} t_{c, d}\right]=(a d-b c) t_{a+c-1, b+d-1}\right\}\right)
$$

Lie algebra of functions on $\mathbb{C}_{z, \omega}^{2}$ with Poisson bracket $\{z, \omega\}=1$ $t_{n, m} \mapsto Z^{n} \omega^{m}$
[PBW-type]
Theorem Af is a free $\mathbb{C}\left[\varepsilon_{1} \varepsilon_{2}\right]$-module with basis $t_{a_{1} b_{1}} \cdots t_{a_{n} b_{n}}$ such that $\left(a_{1} b_{1}\right) \leqslant \cdots \leqslant\left(a_{n} b_{n}\right)$ where " \leqslant " is a total order on $\mathbb{Z}_{\geqslant 0} \times \mathbb{Z}_{\geqslant 0}$

Proposition: There exists $\mathbb{C}\left[\varepsilon_{1}^{ \pm 1}, \varepsilon_{2}\right]$-algebra homomorphism

$$
\begin{aligned}
A\left[\varepsilon_{1}^{-1}\right] & \longrightarrow \mathbb{C}^{\varepsilon_{1}}\left[M_{0,1}^{\varepsilon_{2}}\right]\left[\varepsilon_{1}^{-1}\right] \\
(n, m) \quad t_{n, m} & \longmapsto \frac{1}{(0,0)} \operatorname{sy} \operatorname{Sym} \operatorname{Tr}\left(X^{n} y^{m}\right) \\
t_{0,0} & \longmapsto \frac{1}{\varepsilon_{1}} \cdot \delta
\end{aligned}
$$

The proof rs by direct computation.
Consider subalyebra $B \subset \not \subset$ generated by $t_{n_{m}}^{\prime}=\varepsilon_{1} \cdot t_{n, m}$ it's easy to see that B is free over $\mathbb{C}\left[\varepsilon_{1} \varepsilon_{2}\right] w /$ basis

$$
t_{a_{1} b_{1}}^{\prime} \cdots t_{a_{n} b_{n}}^{\prime} \quad\left(a, b_{1}\right) \leqslant \cdots \leqslant\left(a_{n} b_{n}\right)
$$

And $B /\left(\varepsilon, \varepsilon_{2}\right) B=S_{y m} \cdot\left(\left\{t_{n, m}^{\prime}\right\}_{n, m \in \mathbb{Z}_{20}}\right)$
Moreover the map $A\left[\varepsilon_{1}^{-1}\right] \rightarrow \mathbb{C}^{\varepsilon_{1}}\left[\mu_{0,1}^{\varepsilon_{2}}\right]\left[\varepsilon_{1}^{-1}\right]$ sends B to $\mathbb{C}^{\varepsilon_{1}}\left[M_{0,1}^{\varepsilon_{2}}\right]$
Theorem The homomorphism $B \rightarrow \mathbb{C}^{\varepsilon_{1}}\left[\mu_{0,1}^{\varepsilon_{2}}\right]$ is isorophhism sketion of proof $\mathbb{C}^{\varepsilon_{1}}\left[\mu_{0,1}^{\varepsilon_{2}}\right]$ is generratal by Sym ir $\left(X^{n} y^{n}\right)$ and δ, since (use F-term)

$$
J^{i} S_{y m}\left(x^{n} y^{m}\right)_{\nu}^{j} I_{j}=\varepsilon_{2} \cdot S_{y m} T_{r}\left(x^{n} y^{m}\right)
$$

Thus $B \rightarrow \mathbb{C}^{\varepsilon_{1}}\left[\mu_{0,1}^{\varepsilon_{2}}\right]$ rs surjective $t_{n, m}^{\prime} \mapsto \operatorname{STr}\left(x^{n} y^{m}\right)$

$$
t_{0,0}^{\prime} \mapsto \delta
$$

It remains to show injectionty. We claim that

$$
B /\left(\varepsilon_{1} \varepsilon_{2}\right) \longrightarrow \mathbb{C}^{\varepsilon_{1}}\left[\mu_{0,1}^{\varepsilon_{2}}\right] /\left(\varepsilon_{1} \varepsilon_{2}\right)
$$

is r_{n} jective.

Observation: Both sides are graded and the map preserves the gradin. dey $t_{n, m}=n+m \mapsto S \tau\left(X^{n} y^{m}\right)$

$$
\operatorname{deg} X=\operatorname{deg} Y=\operatorname{deg} I=\operatorname{deg} J=1
$$

$$
\operatorname{deg} \delta=0
$$

What is $\mathbb{C}\left[M_{0,1}^{0}\right] ? \quad M_{N, 1}^{0}=S^{N}\left(\mathbb{C}^{2}\right)$.
thus weight 0 admissible sequences is the subalgeborn of $\underset{N}{\lim } \mathbb{C}\left[S^{N}\left(\mathbb{C}^{2}\right)\right]$ generated by \mathbb{C}^{x}-eigen vectors. where $\mathbb{C}^{x} \mathbb{C} \mathbb{C}^{2}$ wi weights $-1,-1 \quad \operatorname{Sin}\left(x^{n} y m\right)$
This is known as "Ring of MacMahon Symmetric Functions"
Denote it by S.
Theorem [See "Multrsymmetruc Functions" J. Dabber 1999]

$$
S \simeq \mathbb{C}\left[M_{(a, b)}\left|(a, b) \in \mathbb{Z}_{2_{0}} \times \mathbb{Z}_{00}\right|(0,0)\right]
$$

where $M_{(a, b)}$'s image in $\mathbb{C}\left[S^{N}\left(\mathbb{C}^{2}\right)\right]$ is

$$
x_{1}^{a} y_{1}^{b}+x_{2}^{a} y_{2}^{b}+\cdots+x_{N}^{a} y_{N}^{b}
$$

(Araby of power sum in $S^{N}(\mathbb{C})$)

$$
P_{a}=X_{1}^{a}+x_{2}^{a}+\cdots+x_{N}^{a}
$$

It is easy to see that δ has no algebraic relations with $M_{(a, b), \text { thus } \mathbb{C}\left[M_{0,1}^{0}\right] \simeq S[\delta]}$
On the othe hand,

$$
B /\left(\varepsilon, \varepsilon_{2}\right) \simeq \operatorname{Sym}\left(\left\{t_{n, m}\left|(n, m) \in \mathbb{Z}_{20} \times \mathbb{Z}_{30}\right|(0,0)\right\}\right)\left[t_{0,0}\right]
$$

Has the same \mathbb{C}^{x}-weights with S
Therefore $B /\left(\varepsilon, \varepsilon_{2}\right) \xrightarrow{\sim}\left[M_{0,1}^{0}\right]$
The injectivity before modulo $\left(\varepsilon_{1} \varepsilon_{2}\right)$ vs deduced from the above and the Leading Term Trick Details omitted

Corollary The homomorphism $\mathscr{A}\left[\varepsilon_{1}^{-1}\right] \rightarrow \mathbb{C}^{\varepsilon_{1}}\left[M_{0,1}^{\varepsilon_{2}}\right]\left[\varepsilon_{1}^{-1}\right]$ is isomorphism
N. Gray.

Remark: Compare our A with Etingof's deformed double current algebra $(D D C A)$, we see that they are isomorphic, see Proposition 4.2.13 of 2005.13604 This confirms one of Kevin's conjecture in the Case $K=1$.

Coproduct of A

Consider the $\operatorname{map} \triangle: A \rightarrow A \otimes A\left(\left(Z^{-1}\right)\right)$

$$
\left\{\begin{array}{l}
\Delta\left(t_{0, n}\right)=1 \otimes t_{0, n}+\sum_{m=0}^{n}\binom{n}{m} z^{n-m} t_{0, m} \otimes 1 \\
\Delta\left(t_{2,0}\right)=1 \otimes t_{2,0}+t_{2,0} \otimes 1+2 \sigma_{3} \sum_{m, n \geqslant 0} \frac{(m+n+1)!}{m!n!}(-1)^{n} z^{-n-m-2} t_{0, n} \otimes t_{0, m}
\end{array}\right.
$$

Proposition [Garotto-Rupčák]
\triangle extends to an algebra homomorphism.

In fact, \triangle has more structures, to explain it, we need some notations:

Definition A Vertex Opertor Coalgebra (VOC) is a vector space V together w. (incur maps.

- [Coproduct] $\lambda(z): U \rightarrow(U \otimes U)\left(\left(Z^{-1}\right)\right)$
- [Covacuum] $C: V \rightarrow \mathbb{C}$ =Dualrze all
satisfying axioms: ingredients of UOA"
(1) Left Counit: $\forall v \in U$

$$
(C \otimes I d v) \lambda(z) \cdot v=v
$$

(2) Cocreation: $\forall v \in V$

$$
\begin{aligned}
& \left(I d_{V} \otimes c\right) \lambda(z) U \in U[z] \quad \text { and } \\
& \lim _{z \rightarrow 0}\left(I d_{U \otimes C}\right) \lambda(z) U=U
\end{aligned}
$$

(3) Jacobi Identity: $\forall v \in V$

$$
\begin{aligned}
& z_{0}^{-1} \delta\left(\frac{z_{1}-z_{2}}{z_{0}}\right)\left(I d_{0} \otimes \lambda\left(z_{2}\right)\right) \wedge\left(z_{1}\right) \\
& -z_{0}^{-1} \delta\left(\frac{z_{2}-z_{1}}{-z_{0}}\right)\left(T \otimes \lambda\left(z_{1}\right)\right) \lambda\left(z_{2}\right) \\
& =z_{2}^{-1} \delta\left(\frac{z_{1}-z_{0}}{z_{2}}\right)\left(\lambda\left(z_{0}\right) \otimes I d_{v}\right) \lambda\left(z_{2}\right)
\end{aligned}
$$

where $\delta\left(\frac{y-x}{z}\right)=\sum_{\substack{m \geq 0 \\ n \in \mathbb{Z}}}\binom{n}{m} y^{n \cdot m} x^{m} z^{-n}$
and $T: U_{1} \otimes U_{2} \rightarrow U_{2} \otimes U_{2}$ swaps two Components

Proposition Consider linear map $C: A \rightarrow \mathbb{C}$ sends 1 to 1 and $t_{n, m}$ to 0 , then (A, D, c) is a $\cup O C$.

Proof is by direct computation.

